
www.manaraa.com

Opportunities in Big Data Management
and Processing

Bela STANTIC a,1 and Jaroslav POKORNY b

a School of Information and Communication Technology, Griffith University, Australia
b Faculty of Mathematics and Physics Charles University, Prague, Czech Republic

Abstract. Every day we witness new forms of data in various formats. Some ex-
ample include structured data from transactions we make, unstructured data as text
communications of different kinds, varieties of multimedia files and video streams.
To ensure efficient processing of this data, often called ‘Big Data’, the use of highly
distributed and scalable systems and new data management architectures, e.g. dis-
tributed file systems and NoSQL database, has been widely considered. However,
volume, variety and velocity of Big Data and data analytics demands indicate that
these tools solve Big Data problems partially only. To make effective use of such
data, novel concepts of management is required, in particular, being able to effi-
ciently access data within a tolerable time not only from the users own domain, but
also from other domains which the user is authorized to access. This paper elab-
orates on some issues related to the efficient management of Big Data, discusses
current trends, identifies the challenges and suggests possible research directions.

Keywords. Big Data, Efficient Management, NoSQL, NewSQL

Introduction

The fundamental concept of generating data has changed recently, in the past, several
main sources have been generating data and all others have been consuming data. How-
ever, today all of us are both generating data and also consumers of this shared data. Ev-
ery day there new sources of data arise from which valuable information can be extracted,
including meteorology, genomics, complex physics simulations, biological and environ-
mental research, different sensory technologies, software logs, cameras, etc. These data
sets that are so large and complex, often termed as ‘Big Data’, is beyond the ability of
traditional database management systems to be handled within a reasonable time-frame.
There are many challenges including how to capture, curate, store, efficiently search,
share, transfer, analyze and visualize the data. To overcome these challenges, there is a
need for new architectures, techniques, algorithms, and analytics not only to manage it,
but also to extract the value and the hidden knowledge. This new concept of data gener-
ation has caused a significant increase in volume as well as in the number of users, and
therefore, requires more feasible solutions of scaling in such dynamic environments than
is offered by traditional database architectures and has to be replaced using options such

1Corresponding Author: Bela Stantic; School of Information and Communication Technology Griffith
Sciences, Griffith University, QLD 4222, Australia ; E-mail: B.Stantic@griffith.edu.au.



www.manaraa.com

as massively parallel systems running on tens, hundreds, or even thousands of servers.
Additionally, to obtain valuable information, these systems need to manage various data
sources and types of data which results in all of this data needing to be linked together.
For storing and processing large datasets, users have a number of options associated with
the problems mentioned above, they can use:

• traditional legacy and parallel database systems,
• distributed file systems such as Hadoop technologies,
• key-value datastores (so called NoSQL databases),
• new database architectures (e.g., NewSQL databases).

Distributed file systems such as the Hadoop Distributed File System (HDFS), for ex-
ample, use file partitioning and replications. NoSQL databases are a relatively new type
of database which were initiated by Web companies in the early 2000s. Finally, NewSQL
databases are aiming to provide the scale-out advantages of NoSQL databases often on
commodity hardware. It is also used to maintain the transactional data consistency of
traditional RDBMs, in addition to also being compatible with SQL.

Progress and innovation is no longer hindered by the ability to collect data but by
the ability to manage, analyze, summarize, visualize, and discover knowledge from the
collected data in both an efficient manner and in a scalable fashion. This paper focuses
on the approaching challenges with Big Data with the goal of relating the principles of
today’s data processing tools and methods, and to show some alternatives in this area as
well as suggest future directions.

The reminder of this paper is organized as follow: In Section 2 we briefly elaborate
on how traditional database management systems handle Big Data. Section 3 identifies
and group sources of Big Data and elaborates what has been done to ensure efficient
management of data in each group. It also addresses problems not only about the ar-
chitectures, but also about the indexing methods. In Section 4, we evaluate various ap-
proaches to the Big Data Processing and Big Analytics, and in Section 5 we conclude the
paper by discussing and identifying open problems and challenges associated with Big
Data as well as discuss possible future directions.

1. Traditional Database Management Systems and Big Data

Traditional database management systems, which are commercially available and are in
place in most organizations, are disk based SQL oriented Database systems. The data
inside these systems is stored in disk blocks, which are heavily encoded for a variety
of technical reasons. The performance is improved by the use of a main memory buffer
pool and letting the database system move blocks between memory cache and disk. SQL
is used for interactions with the data. Query plans are designed to find the best way
to execute SQL commands by optimizing CPU usage and disk I/Os. The fundamental
operation is normally a read or an update of a table row.

Indexing of the data is normally done by using B-trees in the form of clustered or
unclustered indexes. To ensure concurrency control and crash recovery, dynamic row-
level locking (ACID) and also write-ahead logs are normally in place (Aries) [1]. Repli-
cation, in the case of more nodes, is basically done by first updating the primary node and
then moving the log over the network to other sites and rolling forward at the secondary



www.manaraa.com

node(s). This technology, due to the proven capabilities, starting in the nineties when it
took over the database market, is considered to fit all requirements.

However, the significant increase in the form of application domains, database sizes,
as well as the variety of data began to cause problems for this technology as it started
to be too robust and not able to answer the requirements of new demands. A while ago,
Stonebraker in his 2006 paper identified this by saying one size does not fit all [2]. He
claimed that the three decades of commercial DBMS development can be summed up
in a single phrase: ”One size fits all”. A traditional DBMS architecture, which is orig-
inally designed and optimized for business data processing, has been used to support
many data-centric applications with widely varying characteristics and requirements. He
strongly argues that this concept is no longer applicable to the whole database market
and that the commercial world will venture into a collection of independent database
engines, some of which may be unified by a common front-end parser.

2. Big Data

Every day we witness new types and sources of data emerge that have the ability to
provide useful information. In the early days, the focus was on legacy systems as they
were the main source of data, and therefore, database management systems have been
tailored for their requirements. However, with the emergence of new sources and data,
as well as the need for other types of information, it started to be evident that the tra-
ditional database management systems can not satisfy the ever demanding requirements
and response times. Big Data is most often characterized by several Vs:

• Volume: data scale in the range of Petabytes, Exabytes and even more. It is esti-
mated that the amount of available data is more than doubling every two years [3].
It is important to highlight that the the amount of information individuals create
themselves in form of writing documents, taking pictures, downloading music,
etc, is far less than the amount of information being created about them.

• Velocity: relates both on how quickly data is being produced and how quickly the
data must be processed to meet the demand for extracting useful information. One
of the largest sources of high-velocity data are user devices such as smartphones
where everything you do is/can be logged. Another form of massive amounts
of real-time data is Social media (Twitter, Facebook, or any other social data
streams), however, the value of such data degrades over time.

• Variety: data is in many format types - structured, unstructured, semi-structured,
text (even in different languages), media, etc. A single application can be gen-
erating/collecting many types of data. This variety of unstructured data creates
problems not only for storage but also for mining and analyzing data. To extract
this knowledge, all these types of data need to be linked together.

• Veracity: relates to managing the reliability and predictability of inherently im-
precise data with noise and abnormality. It also refers to the fact that the data that
is being stored, and mined must be meaningful to the problem being analyzed.
Veracity in data analysis is the biggest challenge when compared with volume
and velocity as it is harder to solve problems to keep your data clean.

A fifth V was introduced by Gamble and colleagues and it associates with the Value,
and indicates if the data is worthwhile and has value for business [4]. Several other Vs



www.manaraa.com

have been mentioned in the literature, such as Variability indicating the different mean-
ings associated with a given piece of data, and Volatility addressing the problem of how
long data is valid and how long should it be stored or is it no longer relevant to the current
analysis and decisions.

When talking about today’s data based on the type of data, we can generally divide
it into three main groups:

• Online Transaction Processing (OLTP), which is basically all forms of legacy
systems driven by ACID properties.

• Online Analytical Processing (OLAP) or Data Warehousing, this group also re-
lies on DBMS however the request for ACID properties can be relaxed due to
mostly read only operations and the main attention is given to speed and therefore
OLAP’s are mostly based on indexes.

• Real-Time Analytic Processing (RTAP), new types of data as well as huge vol-
umes and velocities of such data pose significant demands and it is evident that
the traditional database management systems are unable to answer this demand in
real time. We are witnessing that this group starts to dominate and is taking over
with regard to the size of collected data as well as the useful information it can
provide.

In the following sections we will provide some details on what can be done to ensure
efficient access to data and information in the above mentioned groups.

2.1. Efficient Management of Data in OLTP

As briefly explained above, OLTP databases rely on data stored in the form of rows
in relations. Each relation has a primary key which uniquely identifies the record and
also can have one or more secondary indexes, which also can be on one attribute or be
composite and consist of more attributes. Most often these indexes are based on B-tree
structures with internal and leaf nodes [5]. Despite being proposed more than 30 years
ago, the overall performance of the B-tree is considered the best and in most commercial
relational databases management systems some forms of B-tree structure is considered
as a default index. The B-tree has excellent performance on range queries as well as
good performance in exact match queries. Complexity of the B-tree is logb N where b
is the blocking factor (the number of records per block) and N is the number of records.
It is evident why performance is excellent as in case of blocking factor of 100, which is
common, and with million records, it is required to have only 3 reads to find the required
record. Additionally, hash based indexes are being used for exact queries as they perform
better because there is no need to navigate through internal nodes but just to allocate the
appropriate bucket based on hashing function.

OLTP databases also store spatial data which is most often managed by family of
R-tree indexes [6]. Efficient Management of temporal data presents a challenge due to
the need to manage intervals and several methods, which can be implemented within
the commercial databases management systems, have been proposed in the literature
such as the RI-tree [7] and VB-tree [8]. Also, attention has been given to the efficient
management of multidimensional data such as UB-tree [9] and VG-Curve [10].



www.manaraa.com

2.2. Efficient Management of Data in OLAP

Online Analytical Processing (OLAP) including Data Warehousing (DW), which focuses
on data storage, is a broader category of business intelligence which also encompasses
relational database, report writing and data mining. OLAP relies on a multidimensional
data model, which allows complex analytical and ad hoc queries with a rapid execution
time. As the performance of DW is very important they are usually entirely built on in-
dexes, in addition to B-tree indexes Bitmap indexes are also utilized [11]. The bitmap
representation is an alternate method of the row ID’s representation. It uses less space
and it is less CPU demanding than the row IDs particularly when the number of dis-
tinct values of the indexed column is low. Additionally, the bitmap index improves com-
plex query performance by applying low-cost Boolean operations such as OR, AND,
and NOT in the selection predicate to reduce the search space before even going to the
primary source of data. To improve the response time, different methods of identifying
and materializing views have been also proposed in literature [12].

To further improve the efficiency, it has been suggested to use column stores as they
can perform faster than the row stores by the factor of 50 or even 100. Explanation for this
is as most warehouses have a central fact table which stores details for example ”How
many items have been sold in particular stores during the certain time period”. This fact
table has joins with dimension tables, which provide details about products, customers,
stores, etc. These tables are organized in star or snowflake schema. Performance of the
DW can be improved if column store is in place as typical warehouse query reads only
several attributes out of maybe 100 that the fact table might have. To answer a query, a
Row store needs to read all attributes of all rows that satisfy the query criteria. Regardless
of how efficient the access method is, it is evident that significant amounts of the data
fetched from disk into memory is irrelevant, and therefore, will slow down the system
significantly. Due to the longer record size, the blocking factor is smaller and more data
blocks need to be accessed. In contrast, Column store reads only columns of interest for
the particular query and therefore can answer the same query more efficiently as it will
be required less physical disk reads. Also, compression is much easier and more produc-
tive in a column store. In column store each block has only one kind of attribute. Advan-
tages of column stores have been identified and the first commercially available column
oriented database was developed in 1993 followed in 1995 by Sybase IQ2. However,
since then we witnessed many open source and commercial implementations, including
Amazon 3 which is a hosted data warehouse product part of the larger cloud computing
platform Amazon Web Services, Google BigQuery4, Vertica5, Teradata6, etc.

The importance of column stores to improve efficiency was also identified by one of
the major commercial vendors in relational databases, IBM, which in 2012 released DB2
(code name Galileo) with row and column access control, which enables ‘fine-grained’
control of the database and data management that moves data to cost effective storage
based on how frequently they are accessed. Subsequently, to further improve perfor-
mance, it added in-memory columnar processing technology with other innovations such
as Parallel Vector Processing, Actionable Compression, and Data Skipping.

2http://www.sybase.com/products/datawarehousing/sybaseiq
3Redshifthttp://aws.amazon.com/redshift/
4https://cloud.google.com/products/bigquery/
5http://www.vertica.com/
6http://www.teradata.com.au/



www.manaraa.com

2.3. Efficient Management of Data in RTAP

Real time Analytics is about turning information into knowledge using a combination
of existing and new approaches. Volume, velocity and variety of new types of data pose
significant demands and it is evident that the traditional database management systems
cannot answer this demand in real time. Data from different sources and different for-
mats start to dominate both in volume as well as in content of useful information it can
provide. Also, such data is becoming more and more complex, therefore its analysis is
also becoming increasingly complex and computational demanding. To exploit this new
resource, we need to scale both the infrastructures and techniques.

Big Data processing involves interactive processing and decision support processing
of data at rest and real-time processing of data in motion. The latter is usually performed
by Data Stream Management Systems. Time is an integral dimension of data in a stream
which influences its processing, i.e. the analyst cannot re-analyze the data after it is
streamed. Also, velocity can be a problem, since the value of the analysis (and often
the data) decreases with time. If several passes are required, the data has to be put into
a DW where additional analysis can be performed. The former can be warehoused in
a relatively traditional way, as explained in section 2.2 or processed by systems like
NoSQL or NewSQL databases.

2.4. NoSQL Databases

NoSQL databases has been utilized for Real-Time Analytic Processing. NoSQL means
”not only SQL” or ”no SQL at all”, which makes this category of databases very di-
verse. NoSQL solutions are not new as the concept date back to the 1990s. NoSQL pro-
vides simpler scalability and improved performance comparing to traditional relational
databases. What is principal in classical approaches to databases, a (logical) data model,
is described in NoSQL databases rather intuitively, without any formal fundamentals.
The NoSQL terminology is also very diverse and the differences between conceptual and
database view of data is mostly blurred.

The simplest NoSQL databases called key-value stores (or big hash tables) contain
a set of couples (key, value). A key uniquely identifies a value, which is (typically string,
but also a pointer to where the value is stored) and a value can be a collection of couples
(name, value), e.g. in Redis7. This means that the data access operations, typically get
and put, have only a key as the address argument. Though very efficient and scalable,
the disadvantage of this very simple data model can be a problem for such databases.
On the other hand, NULL values are not necessary since in all cases these databases are
schema-less.

In a more complex case, NoSQL databases store combinations of couples (name,
value) collected into collections, i.e. rows addressed by a key, which are basically col-
umn NoSQL databases. New columns can be added to these collections. There is even
further level of structure (e.g., in CASSANDRA8 ) called super-columns, where a col-
umn contains nested (sub)columns. Data access is improved by using column names in
operations get, insert and delete.

7http://redis.io/
8http://cassandra.apache.org/



www.manaraa.com

The most general data models belong to document-oriented NoSQL databases. They
are same as key-value stores but pair each key with an arbitrarily complex data structure
similar to a document. The JSON (JavaScript Object Notation) format is usually used
for presentation of such data structures. JSON is a binary and typed data model which
supports the data types list, map, date, Boolean as well as numbers of different preci-
sions. JSON is similar to XML but it is smaller, faster and easier to parse than XML.
CouchDB9 is based on JSON. MongoDB10 uses BSON (Binary JSON). Its types are a
superset of JSON types. Querying document data is possible by other means than just
a key (selection and projection over results are possible). In general, NoSQL databases
can be classified in the following groups:

• key-value stores: SimpleDB11, Redis, Memcached12, Dynamo13, Voldemort14

• column-oriented: BigTable [13], HBase, Hypertable15, CASSANDRA, PNUTS
[14]

• document-oriented: MongoDB, CouchDB

To improve performance, some NoSQL databases are in-memory databases, which
means that the data is stored in computer’s memory to achieve faster access. The fastest
NoSQL data stores such as Redis and Memcached are entirely served from memory.
Additionally, graph databases are often considered as a category of NoSQL. They offer
graph partitioning strategies for large data, graph query languages designed for particular
types of graph data, and efficient evaluation of queries (graph traversals, sub-graph and
super-graph queries, and graph similarity evaluation).

Transaction processing in traditional RDBMS is based on ACID properties, which
can be considered as a strong consistency. In the context of NoSQL databases, ACID
properties are not implemented fully, databases can be only be eventually consistent or
weakly consistent. In principle, if we abandon strong consistency, we can reach better
availability which will highly improve database scalability. It can be in accordance to
database practice where ACID transactions are also required only in certain use cases.

NoSQL databases described in the list of well-maintained Web site16 includes at
least 150 products including object-oriented, XML, and others.

A more general category of parallel DBMSs called NewSQL17 databases are de-
signed to scale out horizontally on shared nothing machines while ensuring transparent
partitioning, still guaranteeing ACID properties, and employing lock-free concurrency
control. Applications interact with the database primarily using SQL. NewSQL provides
performance and scalability not comparable with traditional DBMS and with Hadoop as
well. For example, a comparison of Hadoop and Vertica has shown that query times for
Hadoop were a lot slower (1-2 orders of magnitude). A lot of success of some NewSQL
solutions lie in the new database architectures, particularly in the in-memory approach.
For example, MemSQL can be considered the fastest NewSQL both in data loading and

9http://couchdb.apache.org/
10https://www.mongodb.org/
11http://aws.amazon.com/simpledb/
12http://memcached.org/
13http://aws.amazon.com/dynamodb/
14http://www.project-voldemort.com/voldemort/
15http://hypertable.org/
16http://nosql-database.org/
17http://451research.com/report-long?icid=1651



www.manaraa.com

query execution times. In the context of Big Analytics, most representatives of NewSQL
are suitable for real-time analytics (e.g., ClustrixDB, Vertica, and VoltDB) or columnar
storage (Vertica). But in general, their performance is still a problem.

2.5. Usability of NoSQL Databases and Hahoop

As NoSQL databases have little or no use of data modelling, developers generally do
not create a logical model, thus the database design is rather query driven, data is uncon-
strained, and there is no standard query language. Some NoSQL databases are more ma-
ture than others, however all of them are trying to solve similar problems. Also, there is
an issue with migration from one NoSQL system to another, as such, conversion is com-
plicated. Although belonging to the same category, two NoSQL tools can be very dif-
ferent. For example, CouchDB uses a low-level query language and scalability through
replications. Mongo owns a rich declarative query language and its scalability is achieved
through sharding. NoSQL databases can be useful in applications which do not require
transactional semantics such as what is found in address books, blogs, or CMS. They
are appropriate for indexing a large number of documents, serving pages on high-traffic
websites, delivering streaming media, managing data such as one typically occurring in
social networking applications.

Therefore, NoSQL is inadvisable for applications requiring enterprise-level func-
tionality (ACID, security and other features of RDBMS technology). However, overall,
NoSQL databases could be a good platform for Big Analytics such as analyzing high-
volume, real time data. For example, Web log analysis and Web-site click streams anal-
ysis belong to highly parallelizable problems which can be efficiently addressed with
NoSQL databases.

On the other hand, e.g. column-oriented NoSQL databases are not suitable for the
majority of DW/BI applications or even many traditional web-based applications. They
have only a few facilities for ad-hoc query and analysis and even a simple query requires
significant programming expertise. HBase albeit enables fast analytical queries, but only
on column level.

In relation to the Hadoop, many NoSQL databases are built on top of the Hadoop
core, i.e. their performance depends on MapReduce jobs. However, MapReduce is still
a very simple technique compared to those used in the area of distributed databases.
MapReduce is well suited for applications which analyze elements of a large dataset
independently, however, applications whose data access patterns are more complex must
be built using several invocations of the Map and Reduce steps. The performance of
such design is dependent on the overall strategy as well as the nature and quality of the
intermediate data representation and storage. For example, e-science applications involve
complex computations which pose new challenges to MapReduce systems.

Problems with NoSQL concern the whole architecture. For example, M. Stone-
braker18 points out, that the Hadoop stack has a poor performance except where the ap-
plication is “embarrassingly parallel”. The reasons for it having a background in no in-
dexing, very inefficient joins in Hadoop layer, “sending the data to the query” and not
“sending the query to the data”. Another example is Couchbase19 which replicates the
whole document if only a small part is changed.

18http://istc-bigdata.org/index.php/no-hadoop-the-future-of-the-hadoophdfs-stack/
19http://www.couchbase.com/



www.manaraa.com

In the Big Data world, NoSQL databases dominate rather for operational capabil-
ities, i.e. interactive workloads where data is primarily captured and stored. Analytical
Big Data workloads on the other hand tend to be addressed by parallel database systems
and MapReduce. Big Data is often associated with a cloud computing. But cloud com-
puting means only computing resources that are delivered as a service, typically over the
Internet. NoSQL databases used in such environments are mostly sufficient for storage
and processing of Big Data used there. However, as we consider more complex cloud
architectures, NoSQL should not be the only option in the cloud.

2.6. NoSQL - Indexing

NoSQL databases are generally based on the key-value store model which efficiently
supports the single-key index and can respond to queries in milliseconds. To achieve this
performance, different NoSQL databases utilize different indexing methods. For exam-
ple, CouchDB has a B-tree index which is a bit different to the original. While it main-
tains all of the important properties, it adds Multi-Version Concurrency Control and an
append-only design. B-trees are used to store the main database file as well as view in-
dexes. One database is one B-tree, and one view index is one B-tree. MongoDB pro-
vides different types of indexes for different purposes and various content types. Single
field indexes only include data from a single field of the documents in a collection and
supports single field indexes on fields at the top level of a document and on fields in
sub-documents, in addition to Compound indexes. Multikey indexes are also supported
which reference an array and records a match if a query includes any value in the array.
To improve efficiency, an index can be created as sparse, and in this case, the indexes
will not include documents that do not have the indexed field.

However, numerous applications require multi-dimensional queries, which NoSQL
databases do not support efficiently. Some solutions of NoSQL database that respond
to multi-dimensional query are MapReduce and Table-Scan, but they are inefficient and
costly, especially when the selectivity of the query request is low. Multi-dimensional in-
dex technology has been extensively studied in traditional DBMSs. However, they can-
not meet the increasing requirements of scalability and high I/O throughput in the con-
text of big data, therefore distributed multi-dimensional index for big data management
on cloud platform management has been introduced. They can be generally grouped into
two categories according to the associated distributed storage architecture:

• Peer-to-Peer system: Several methods have been proposed in the literature includ-
ing Wu and colleagues who proposed a general index framework with global and
local indexes. The local index is built on local data while the index framework
selects nodes from local indexes by a respective cost model and organizes them
together to form the global index [15]. There is the RT-CAN proposal which em-
ploys R-trees for local indexes and is based on CAN [16] protocol, [17] while
QT-Chord has a local index based on a quad tree [18].

• Master-slave style: EMINC is a two-layered index with R-Tree for a global index
which is stored in master node, while slave nodes local data are indexed with
K-d tree [19]. MD-HBase utilizes Z-order curve and K-d tree or Quad-Tree [20].
EDMI in the global layer employs K-d tree to partition entire space into many
subspaces and the local layer contains a group of Z-order prefix R-trees related to
one subspace [21].



www.manaraa.com

3. Big Analytics

Big data analytics is the process of analyzing large amounts and different types of data to
uncover hidden patterns, correlations and other useful information. Big analytics could
accomplish much more than what can be done with smaller datasets. For example, Big
Analytics allows move beyond linear approximation models towards complex models of
greater sophistication because small datasets often limit our ability to make accurate pre-
dictions and assessments. Also, it allows predictive analyses utilizing techniques such as
data mining and statistical modeling. The use of such techniques coupled with Big Data
vastly improves predictability and scoring. Additionally, Big Data significantly improves
the ability to locate and analyze the impact of rare events that might escape detection
in smaller data sets. Access to larger datasets, affordable high-performance hardware,
and new powerful analytical tools provide means for better accuracy in predictions. Big
analytics is a genuine leap forward and a clear opportunity to realize enormous gains in
efficiency, productivity, revenue, and profitability [22]. Big Analytics is about turning in-
formation into knowledge using a combination of existing and new approaches. Related
technologies include:

• data management (uncertainty, query processing under near real-time constraints,
information extraction, explicitly managed time dimension),

• new programming models,
• machine learning and statistical methods,
• complex systems architectures,
• information visualization.

Big Data is often mentioned only in context with Business Intelligence (BI), how-
ever, not only BI developers but also e-scientists analyze large collections of data. A
challenge for computer specialists or data scientists is to provide these people with tools
that can efficiently perform complex analytics considering the special nature of Big Data.
It is important to emphasize that Big Analytics does not only involve the analysis and
modelling phase. For example, noisy context, heterogeneity, and interpretation of results
are also necessary to be taken into account. All these aspects influence scalable strategies
and algorithms, therefore, more effective preprocessing steps (filtering and integration)
and advanced parallel computing environments are needed.

Besides these rather classical themes of mining Big Data, other interesting issues
have appeared in last years, e.g. entity resolution and subjectivity analysis. The latter
includes sentiment analysis and opinion mining as topics using information retrieval and
Web data analysis. A particular problem is finding sentiment-based contradictions at a
large scale and to characterize them. Graph pattern matching is commonly used in social
network analysis, where the graph involves, e.g. a billion of users and hundreds billions
links. Traditional analytic methods are able only to cope with small data sets and require
expensive configurations of hardware and software to run complex analyses. In any case
the main problems of current data mining techniques applied on Big Data come from
their inadequate scalability and parallelization.



www.manaraa.com

4. Concluding Remarks

It is evident that ”one size does not fit all”. Different types of data and different require-
ments pose different challenges and needs, which can be only efficiently answered with
different techniques and different concepts. This is an interesting time in databases, there
is a lot of new ideas as well as products. Commercial traditional database management
systems in the past successfully managed to add features to address different trends and
needs, and as a result they became too large and too resource demanding. However, de-
spite all the challenges, none of the proposed concepts will in the near future guarantee
requirements that most OLTP application domains require. If a new product satisfies all
requirements, it will be most likely also too complex and resource demanding and at the
same time not yet proven enough, and as a result, most likely will not be widely accepted.
Therefore, traditional database management systems are here to stay for OLTP applica-
tions, at least for a while. However, they should move toward the main memory systems
and therefore current indexing methods will need to evolve to main memory search.

In relation to OLAP, answering needs for Business Intelligence, data warehouses
will be bigger and bigger. To be able to efficiently work with this volume of data, DW
will need to be column store based and able to run on dynamic scaling architectures. We
are already witnessing this change. Such a concept could successfully compete in the
data warehousing market.

In relation to Real-Time Analytic Processing, it is expected that the changes will be
driven by requests of complex analytics, which are able to predict future not just provide
valuable information from data. This will be possible as more and more data from dif-
ferent sources that contains useful information will be captured. One of the new sources
will be the “internet of things” along with all other sources of Big Data. The challenge
will be to efficiently process all that data and to extract useful information in real time.
NoSQL databases will only be utilized in applications with schema-later concepts and
obviously where ACID properties are not essential. However, we have already witnessed
main NoSQL databases such as Cassandra and MongoDB are moving to SQL. They are
also moving toward ACID. Initially NoSQL used to mean “No SQL”, then meant “Not
only SQL”, and at present most accurate definition would be “Not yet SQL”. Hadoop
stack will need to change to something different as it is only good for very small frac-
tion of application, which Stonebraker calls “embarrassingly parallel”, it will need to
look different. It is not likely that the current form HDFS will survive as it is very in-
efficient. New data management architectures, e.g. distributed file systems and NoSQL
databases, can solve Big Data problems only partially due to their complexity and ana-
lytics demands. NewSQL systems are promising to address these shortcomings. Several
promising systems in this category are VoltDB, Hana(SAP), and SQLFire.

To efficiently obtain information in RTAP, efficient distributed multi-dimensional
indexing methods will need to overcome communication overhead which is excessive
for routing query requests between computer nodes. Also, the current index framework
cannot meet the velocity of Big data because communication overhead to synchronize the
local index and global index is huge. To overcome these problems most likely completely
new concept need to be introduced.



www.manaraa.com

References

[1] Mohan C. Aries/lhs: A concurrency control and recovery method using write-ahead logging for linear
hashing with separators. In: ICDE, 1993. 243–252.

[2] Stonebraker M. ”One Size Fits All”: An Idea Whose Time Has Come and Gone. In: Proceeding ICDE
’05 Proceedings of the 21st International Conference on Data Engineering, 2006. 2–11.

[3] Gantz J., Reinsel D. Extracting value from chaos. In: IDC iView, 2011. 1–12.
[4] Gamble M., Goble C. Quality, Trust and Utility of Scientific Data on the Web: Toward a Joint model.

In: Proceedings of the ACM WebSci11, 2011. 1–8.
[5] Comer D. The Ubiquitous B-Tree. Computing Surveys, 1979, 11(2), 123–137.
[6] Guttman A. R-Trees: a Dynamic Index Structure for Spatial Searching. In: Proceedings of the 1984

ACM SIGMOD international conference on Management of data, 1984. 47–57.
[7] Kriegel H.P., Potke M., Seidl T. Managing intervals efficiently in object-relational databases. Proceed-

ings of the 26th International Conference on Very Large Databases, 2000, 407–418.
[8] Stantic B., Terry J., Topor R., Sattar A. Advanced indexing technique for temporal data. Computer

Science and Information Systems - ComSIS, 2010, 7(4), 679–703.
[9] Ramsak F., Markl V., Fenk R., Zirkel M., Elhardt K., Bayer R., Forschungszentrum B., Mnchen T.

Integrating the ub-tree into a database system kernel. In: VLDB’00 Proceedings of the 26th International
Conference on Very Large Data Bases, 2000. 263 – 272.

[10] Terry J., Stantic B. Indexing Method for Multidimensional Vector Data. Computer Science and Infor-
mation Systems Journal, 2013, 10(3), 1077–1104.

[11] Spiegler I., Maayan R. Storage and retrieval considerations of binary data bases. Information Processing
and Management: an International Journal, 1985, 21(3), 233–254.

[12] Derakhshan R., Dehne F., Korn O., Stantic B. Simulated annealing for materialized view selection
in data warehousing environment. In: Proceedings of the 24th IASTED International Conference on
Database and Applications, 2006. 89–94.

[13] Chang F., Ghemavat J.D.S., et al. Bigtable: A Distributed Storage System for Structured Data. In:
Journal ACM Transactions on Computer Systems (TOCS)- Article No. 4. , volume 26, 2008.

[14] Cooper B., Ramakrishnan R., et al. PNUTS: Yahoo!’s hosted data serving platform. Journal Proceedings
of the VLDB Endowment, 2008, 1(2), 1277–1288.

[15] Wu S., Wu K. An indexing framework for efficient retrieval on the cloud. In: IEEE Data Engineering
Bulletin, 2009. 75–82.

[16] Ratnasamy S., Francis P., Handley M., Karp R.M., Shenker S. A scalable contentaddressable network.
In: SIGCOMM, 2001. 161–172.

[17] Wang J., Wu S., Gao H., Li J., Ooi B. Indexing multi-dimensional data in a cloud system. In: SIGMOD,
2010. 591–602.

[18] Ding L., Qiao B., Wang G., Chen C. An efficient quad-tree based index structure for cloud data man-
agement. In: LNCS, vol. 6897, 2011. 238–250.

[19] Zhang X., Ai J., Wang Z., Lu J., Meng X. An efficient multi-dimensional index for cloud data manage-
ment. In: CloudDB, 2009. 17–24.

[20] Nishimura S., Das S., Agrawal D., Abbadi A. A scalable multidimensional data infrastructure for loca-
tion aware services: MD-HBase. In: CloudDB, 2011. 7–16.

[21] Wang J., et al. Distributed Multi-dimensional Index for Big Data Management. In: WAIM 2013, LNCS
7923, 2013. 130–141.

[22] Nie N.H. The rise of big data spurs a revolution in big analytics. Revolution Analytics Executive Briefing,
2011, 1–8.


